

pMSSM scan for future colliders (& more)

Jennet Dickinson

September 1, 2021

Snowmass EF Workshop, EF08/09 Parallel Session

Link to twiki

Intro to pMSSM

- Most SUSY searches are optimized in terms of simplified models (2-3 free parameters)
- However, the full MSSM contains 120 free parameters
- The pMSSM goes beyond simplified models, but uses motivated assumptions to reduce the total number of parameters to a more tenable 19 parameters:

 $tan \beta$: the ratio of the vev of the two–Higgs doublet fields. M_A : the mass of the pseudoscalar Higgs boson μ : the Higgs–higgsino mass parameter M_1, M_2, M_3 : the bino, wino and gluino mass parameters. $m_{\tilde{q}}, m_{\tilde{u}_R}, m_{\tilde{d}_R}, m_{\tilde{l}}, m_{\tilde{e}_R}$: first/second generation sfermion masses $m_{\tilde{Q}}, m_{\tilde{t}_R}, m_{\tilde{b}_R}, m_{\tilde{L}}, m_{\tilde{\tau}_R}$: third generation sfermion masses A_t, A_b, A_τ : third generation trilinear couplings.

arXiv 9901246

Goal of Snowmass pMSSM scan

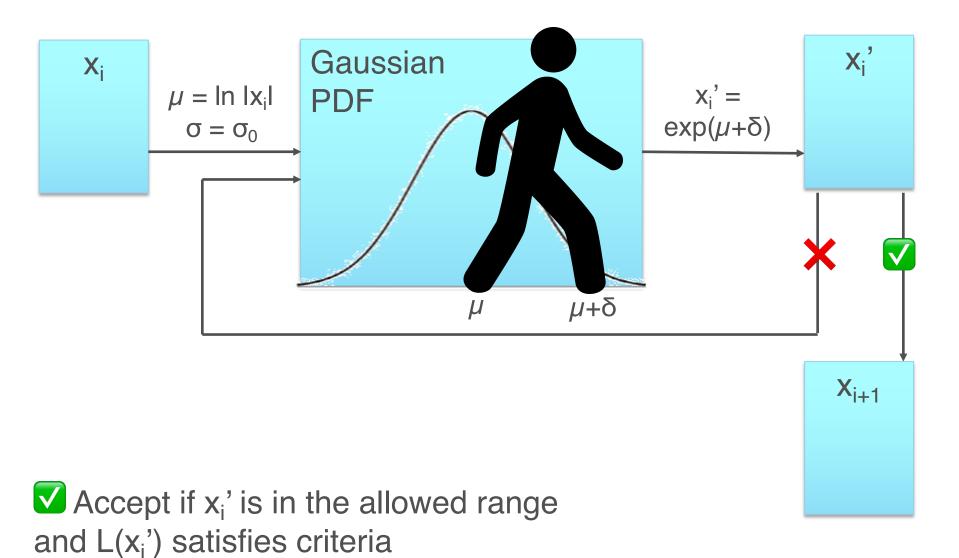
- Explore future sensitivity in a framework that goes beyond simplified SUSY models
- Understand the physics potential of different future experiments in the context of the pMSSM
 - How will SUSY sensitivity from various collider scenarios overlap/complement each other?
 - What interesting pMSSM models have limited coverage, and how can we expand this coverage?
- Complementarity across Snowmass Frontiers: input from dark matter, rare frontier, etc.
 - What does the recent muon g-2 measurement tell us about viable pMSSM models and their accessibility at future colliders?

Overview of pMSSM scan strategy

- 1. Sample points in the 19D pMSSM space
 - Most progress so far has been on this step
- 2. Focus in on interesting regions of phase space
- 3. Generate signal events
- 4. Perform analyses for each collider scenario
- 5. Compare performance of different future experiments

1. Sample points in the 19D pMSSM space

- We will perform a grand scan that aims to cover the OR of accessible ranges of many collider scenarios, up to 100 TeV pp collider
- This is a HUGE parameter space. Use a Markov chain Monte Carlo to step through the space in a smart way
 - Use logarithmic stepping to populate low values of mass parameters more densely than high values
 - Likelihood for accepting/rejecting a point is based on existing experimental results

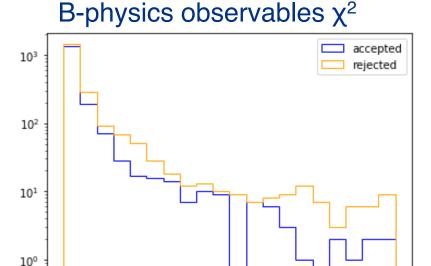

pMSSM parameter ranges

Parameter	Minimum	Maximum	Stepping
tan β	1	60	Log
M _A	100 GeV	25 TeV	Log
ΙμΙ	80 GeV	25 TeV	Log
IM ₁ I	1 GeV	25 TeV	Log
IM_2I	70 GeV	25 TeV	Log
M_3	200 GeV	50 TeV	Log
m _L 123~, m _e 123~	90 GeV	25 TeV	Log
m _Q 12~, m _u 12~, m _d 12~	200 GeV	50 TeV	Log
m _Q 3~, m _u 3~, m _d 3~	100 GeV	50 TeV	Log
$ A_b $, $ A_{\tau} $	1 GeV	7 TeV	Log
IA _t I	1 GeV	$3\sqrt{(m_Q3\sim m_u3\sim)}$	Log

Maxima chosen to cover points accessible at a 100 TeV collider

Logarithmic stepping in the McMC

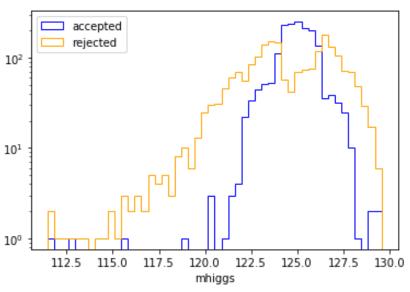
Logarithmic stepping in the McMC


- Log stepping ensures that lower masses are explored with finer granularity than higher masses
 - Low masses: ~degeneracy between SUSY and SM particles gives more diverse signatures
 - Width σ_0 determines the fraction of high mass points
- Using log stepping, the McMC cannot cross zero, but some parameters can have ± values
 - Initial conditions for each scan will be chosen at random, including signs. Keep the initial parameter signs
 - Many threads with different initial signs will be launched in parallel and combined

McMC likelihood

- Calculate the likelihood of each pMSSM point based on its agreement with existing measurements
 - The McMC prefers to take steps to new points with higher likelihood (better agreement with measurements)

Example 4000 point scan:



11

siso chi2

10

Higgs boson mass

13

14

15

12

McMC likelihood

- Contributions from **SPheno** and **FeynHiggs**: Gaussian with mean/width = experimental value/uncertainty
- Contributions from Superiso, HiggsSignals, and **HiggsBounds**: χ^2 is calculated directly by the program

Superiso 4.0	SPheno 4.0.4	FeynHiggs 2.18.0	Higgs Signals 2.6.0	Higgs Bounds 5.9.1
$\Delta_0(B{ ightarrow}KV)$	$BR(B^+ \rightarrow TV)$	m_W	LHC Higgs meas.	LHC Heavy H(тт)
BR(b→sɣ)	$BR(D_s \rightarrow TV)$	Δ(ρ)		→
$BR(B_s \rightarrow \mu\mu)$	$BR(D_s \rightarrow \mu v)$	m _H , H		
$BR(B_d \rightarrow \mu\mu)$	$\alpha_{\mathbb{S}}$	properties		
BR(b→sµµ)	m _{top}			
BR(b→see)	m _{bottom}			
BR(B0→K*0¥)				

2. Focus in on interesting regions of phase space

- We can't simulate events for every pMSSM point!
- Could decide to not simulate inaccessible points
 - With small cross sections / low yield, or based on truth-based likelihood (as ATLAS does)
- Could focus the scan by over-sampling, i.e. simulating a high density of points in interesting regions:
 - Near the measured muon g-2
 - With DM relic density consistent with observations
 - Satisfying naturalness criteria
 - With particular signatures, e.g. disappearing tracks or long-lived particles

3. Generate signal events

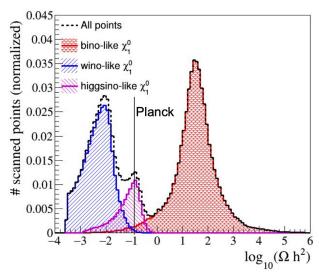
- Signal events can be generated by feeding SLHA files into Pythia, then Pythia events through Delphes
 - Workflow is being developed
- For some studies, signal cross section is enough
- SM backgrounds to be provided by EF MC production group for many collider setups
 - Details in John's slides

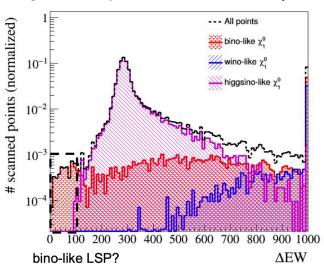
4. Perform analyses

- Once we have pMSSM signal points, need to perform analysis to determine sensitivity
- Largely through crowdsourcing
 - pMSSM points and generated signal events will be made available to everyone
 - Interested groups are encouraged to include the pMSSM points as signal in their analyses
- More groups using the scan points for studies = more complete comparison as the final product
 - Let us know if you want a particular collider setup for generated signal events, etc.
 - Want to extend beyond just EF (dark matter, rare, etc.)

5. Compare performance

How do interesting observables depend on pMSSM parameter values?

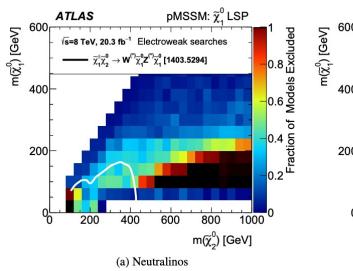

 Especially interesting for this scan, which extends ranges far beyond those performed for LHC studies


Compare the sensitivity of different colliders

- Assuming SM observation, pMSSM points are excluded at some threshold (e.g. 95% CL)
- How do the different scenarios complement each other? Are there uncovered regions?
- What is coverage like in experimentally interesting regions, e.g. near the measured muon g-2?

5. Compare performance

- How do interesting observables depend on pMSSM parameter values?
- Inspiration plots from M. Mroweitz, CMS pMSSM team:
 - Observables broken down by composition of χ^0_1


EW fine-tuning parameter


Can look at many observables (e.g. muon g-2) for different ranges of pMSSM parameters

5. Compare performance

- Compare the sensitivity of different colliders
- Inspiration plots from <u>ATLAS Run 1 pMSSM scan</u>:

Excluded region is actually not well covered in terms of pMSSM

- Can calculate e.g. contours of constant fraction of models excluded and overlay collider scenarios
- Can look at scanned points excluded by > 1, =1, or no future collider scenarios

9/1/21

Conclusions

- The technical implementation is in place for a pMSSM grand scan using Markov chain Monte Carlo
 - Likelihood based on existing measurements steers the scan away from excluded regions
 - Logarithmic stepping ensures the whole phase space is explored, while populating low parameter values with high density
- Brainstorming what signal points to focus on/generate
 - Feedback is welcome
- Workflow for signal MC generation is under development
- Have some preliminary ideas for summary plots
 - Feel free to share yours as well

